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The non-linearity of the bulk stress-strain curve in polypropylene has been modelled by considering the 
curvilinear elastic anisotropy implicit in the lamellar structure of the spherulite. The spherulite is assumed 
to yield progressively as the applied stress is increased. The shape of the plastic zone as a function of 
applied tensile strain within the spherulite is estimated by incorporating a suitable yield criterion. The 
tangential to radial stiffness ratio in the polypropylene spherulite is found to be ~ 3:1. 
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INTRODUCTION 

Partially crystalline polymers such as polypropylene 
consist of two phases; the crystalline and the 
non-crystalline. Each phase has distinct mechanical 
properties, and the overall bulk deformation behaviour 
depends on the relative amounts and distributions of the 
two phases. The relationship between microstructure and 
mechanical properties in crystalline polymers is usually 
described in terms of the average properties of the phases 
which constitute the material. Simple volume fraction 
averages can qualitatively describe bulk properties: 
examples being Voigt or Reuss averages. The elastic 
behaviour of oriented partially crystalline polymers has 
been modelled by Ward in terms of an aggregate 1. A 
review of such micromechanical modelling is given by 
McCullough and most such work deals with the elastic 
response of the material 2. In metals, a classical problem 
is to relate the isotropic elastic properties of the bulk 
polycrystalline solid with the anisotropic elastic coeffi- 
cients of the individual single crystals. A similar approach 
seems to be useful for spherulitic polymers. In attempts 
to construct more accurate micromechanical models for 
deformation in crystalline polymers, both the elastic and 
plastic inhomogeneity and anisotropies of the micro- 
structure must be considered. In particular, the 
progressive change in the distribution of plasticity within 
the microstructure should be incorporated into any 
accurate model. Such modelling will have applications 
in a variety of areas, but in particular the examination 
of sub-critical crack growth in spherulitic solids. 

The phenomenological evidence for the progressive 
changes in a spherulite during mechanical testing is 
extensive 3'4. Spherulites deform inhomogeneously elas- 
tically and plastically. The elastic deformation of isolated 
single spherulites has been described earlier 5. The 
spherulite consists of lamellae arranged in a spherically 
symmetric array. In polyethylene, the c-axis is oriented 
in the planes lying tangentially to the sphere and the 
b-axis is parallel to the radius. The calculated stiffness 
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along the chain backbone is about 40 times larger than 
that parallel to the a or b axes 6. The average stiffness in 
the tangential plane is therefore expected to be 
considerably greater than that in the radial direction 
within the spherulite. The elastic inhomogeneity in 
polyethylene spherulites was shown in earlier work to 
result in progressive yielding in the microstructure which 
is dependent on the elastic anisotropy ratio 7. The 
stress-strain curve measured in a tensile test before the 
load maximum was shown to be related to the progressive 
yielding within the material 8. Micromechanically this has 
been modelled in terms of a solid which is plastically 
inhomogeneous. 

The present work extends the earlier one-dimensional 
models, which used polyethylene as the prototypical 
material, to tensile deformation of polypropylene, and 
uses the micromechanical model to estimate the elastic 
anisotropy within the spherulite from tensile stress-strain 
measurements. The model uses the elastic anisotropy of 
the spherulite as a parameter which can be varied to 
make the mechanical response of the model fit the 
observed stress-strain response. 

The estimation of the elastic anisotropy is significant 
in the development of more accurate models of large 
strain yielding and plastic deformation in spherulitic 
materials. The experimental measurement of these 
anisotropies is not otherwise possible in bulk melt 
crystallized samples. Models which accurately represent 
the mechanical behaviour of spherulites are important in 
understanding the microstructural origins of strength in 
these materials. 

ELASTIC DEFORMATION OF A SPHERULITE 

Macroscopically, the polymer appears to be elastically 
homogeneous and isotropic with two independent elastic 
parameters, Young's modulus E and Poisson's ratio v. 
If these two parameters are known then any of the other 
properties, for example the bulk modulus k and the shear 
modulus/~, can be calculated by standard relations. On 
a finer scale, the microscopic detail becomes significant. 



Homogeneous plasticity in polypropylene: J. R. Dryden et al. 

Individual lamellae are highly anisotropic, with the 
stiffness parallel to the molecular axis being much greater 
than that perpendicular. Sectors of individual spherulites 
are not isotropic but rather highly anisotropic, with 
properties which are expected to be different in the radial 
and tangential directions, depending on the exact local 
lamellar orientation. In addition, amorphous regions lie 
between the lamellae, and between the radial arms of the 
spherulite. The net stiffness in any one direction, 
tangential or radial, is not possible to evaluate using 
standard models, since it depends on the details of the 
crystalline/non-crystalline microstructure, which is not 
known accurately enough. 

The present model assumes each spherulite can be 
described elastically using curvilinear anisotropy. There 
are five independent elastic coefficients. The first step in 
the analysis is to relate the five spherulite coefficients to 
the bulk properties. The analysis, which is essentially of 
the so-called 'self-consistent' type, follows that described 
in detail earlier 9. 

To examine the stresses within one spherulite, spherical 
coordinates are convenient (Fioure 1). The body centre 
of the spherulite lies at the origin, and the z-axis is parallel 
to the polar axis while the equatorial plane is defined by 
the x y  plane. Such a spherulite is considered in this model 
to be embedded in an infinite and isotropic matrix (Figure 
2). In the matrix, distant from the influence of the 
spherulite, the deformation is uniform and corresponds 
to uniaxial tension applied in the z direction, that is, 
parallel to the polar axis. Near (and within) the 
spherulite, the uniform deformation field is of course 

Radia l  D i rec t i on  

Tangen t i a l  
a n e  

x 

Figure 1 Idealized spherulite embedded in an infinite matrix; u is the 
radial displacement and v is the displacement in the th direction. The 
properties parallel to the tangential plane are different from those 
parallel to the radial direction 

r= R ? .  'nt~r'=~ 7 

S p h e r u l i t e  

Figure 2 Composite region comprising the spherulite and a shell of 
matrix 1 < r < R. The properties of the anisotropic spherulite and the 
bulk are matched at the interface in the calculation 

disturbed. To find the elastic field it is necessary to solve 
the basic elastic equations in the matrix and in the 
spherulite and then 'join' these solutions together with 
suitable boundary conditions at their interface (which we 
may take for convenience as being given by r = 1). 

The elastic f i e ld  within the spherulite 

It is assumed that the elastic properties of the spherulite 
in the ~b and 0 directions are the same. Hooke's law is: 

(7 r = C l l e  r + C12e¢ k + C 1 2 e  0 

O'4a ~--- C12e  r + C22e4o + C 2 3 e  0 

o- 0 = C12er  + C23e4~ + C 2 2 e  0 

zr,  = 2C,**er, (1) 

~ro = 2C**ero = 0 

Z¢, 0 = (C22 - -  C 2 3 ) e o o  = 0 

The shear stress components, ~rO and z,0, vanish because 
the problem is axisymmetric with respect to the z 
direction. 

Two differential equations involving the radial and 
tangential displacements, u and v, can be obtained by 
inserting Hooke's law, along with the displacement strain 
relations, into the equilibrium equations. The details of 
this analysis are given elsewhere 9. It is mathematically 
convenient to define X = cos ~b and make use of the well 
developed theory of spherical harmonics. Since the 
problem is axisymmetric, the zonal harmonics (Legendre 
polynomials) are prominent and, furthermore, since the 
deformation is symmetrical with respect to the equatorial 
plane only the zeroth and second harmonics are required: 

Po(X) = 1 

P2(X) = (3X 2 - 1)/2 

P~(X)  = 3Xx/ l l  - X 2 

At the matrix/spherulite interface the displacement, (u, v) 
and the stress components, ar and Zr*, are to be joined. 
These quantities, within the spherulite are: 

u = Dr~Po(X) + (blGr ~ + b2Hr~)P2(X) 

v = (Gr ~ + Hr~)P~(X) 

o~ = boDr ~- Ipo(X ) + (bsGr ~- 1 + b , H r  p- 1)P2(X) (2) 

r,¢ = (bsGr ~- 1 + b6Hr ~- 1 )p~(x )  

where 7, ~, fl and b o , . . . ,  b6 are known in terms of 
C l l ,  C12 . . . . .  (]44. The coefficients D, G and H will be 
found eventually by connecting these expressions with 
those corresponding to the deformation in the matrix at 
r = l .  

The elastic f i e ld  in the matr ix  

In the matrix, far from the spherulite, the strain 
components 

A - -  A - -  - -  VC A e x - -  ey  - -  

correspond to uniaxial stress where the superscript A is 
intended to indicate the strain caused by the applied 
stress. The elastic field is given in most of the standard 
texts on the theory on elasticity 1°'11. The expressions 
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corresponding to equation (2) are: 

u=(e~r- ; )P°(x )+[  e}r + \l-2vvj(5-4v~C7 i _ ~Blp2 (X) 

fe~ .C  ~)  v= - - ~  r + ~ + P~(X) 

a, = (3keA + ~ ) P o ( X )  (3) 

+ 2 1 ~ [ e } + ( 2 v - l O ~ ; + ~ ]  

~[e} (l+vlc 4 B \ I  
*'* = - + \ - 2 v ;  - 7)P=(X) 

where eo A_ _ (e~ A + 2eA)/3 is the hydrostatic strain compo- 
nent, e2 A A A = 2(e~ -- e~ )/3 is the deviatoric strain, and # and 
k are, respectively, the shear and bulk moduli. 

Interface conditions 
At the interface, r = 1, the corresponding expressions 

in (2) and (3) are equated. By virtue of the orthogonal 
properties of the zonal harmonics we obtain two sets of 
relations. First, between A and D, it is found that: 

1 D 
O\~k,] (4) 

Second, between the coefficients G, H, C and B it is found 
that: 

/ bl b2 5 - 4 v  3 
1 - 2 v  

b 4 - 2 / t 2 v - 1 0  -24 / t  
1 - 2v 

1 1 1 

1 + v  - 8 #  
\ b  5 b 6 2# 1 - 2--v 

=e~ 2 

\ ~ /  \ - #  / 

(5) 

The uniaxial deformation has effectively been split into 
hydrostatic and deviatoric components. The interface 
conditions, (4), are due to the hydrostatic portion of the 
applied deformation and are decoupled from the 
conditions, (5), set by the deviatoric component. 

Relationship between the spherulite and bulk properties 
Figure 2 shows the spherulite embedded in an infinite 

matrix. Consider the elastic energy of the composite that 
is contained in the spherical region bounded by R. If the 
deformation is axisymmetric, the elastic energy can be 
found by integrating one half (uar +/J~r~b) over the 
spherical surface defined by R. The strain energy, W, of 
the spherulite-matrix composite, evaluated from this 
integral is: 

=[(44 (4 R3 1 
w L \ ~  \ ~ / J  

[( i v  eAc) 1 - rt (8/, + 6k)e~A - 12/, i- --2-v 

The first term on the right represents the strain energy 
A applied to a homogeneous due to uniaxial stress az 

volume equal to 4rcR3/3. The second term on the 

right-hand side represents the change in strain energy 
caused by the spherulite. 

Using Cramer's rule it is possible to obtain, from (4) 
and (5), expressions for the coefficients A and C. The 
coefficient B, perhaps surprisingly, does not affect the 
energy of the composite region. If the spherulite elastic 
properties are completely unrelated to those of the matrix 
the coefficients A and C will be non-zero and the elastic 
energy will be changed according to equation (6). On the 
other hand, if we relate the two sets of elastic properties, 
by demanding that the strain energy of the system must 
remain constant, then, from equation (6), we must impose 
the condition that the coefficients A = C = 0. By forcing 

"the condition A = 0 in (4), we obtain the relation: 

det 3k 

so that 

k bo 
3 

~l-[2C12-C21-[-~N/C21-~-8Cll(C22q-C23-C12)I3 

Similarly, using (5) and setting C = 0, we obtain: 

it det b, 2/.t - 4/L 
1 - i / 2  

\b 5 b 6 - / t  - 8 #  / 

= o ( 8 )  

so that the shear modulus/~ can then be found by taking 
the positive root of the quadratic defined in (8). 

The macroscopic properties are usually given in terms 
of E and v. The shear and bulk moduli are proportional 
to E: 

E E 
/~-  k -  

2(1 + v) 3(1 - 2v) 

The value of v is typically around I/3 so that k ~ E and 
# ~- 3E/8. 

ELASTIC CONSTANTS FOR DIFFERENT 
ANISOTROPY RATIOS 

The elastic constants for a spherulite radial segment can 
be estimated for different tangential/radial anisotropy 
ratios. Assuming a specific anisotropy ratio (C22/Ctl), 
where Cz z is the stiffness parallel to the radial direction, 
and C22 is that in the tangential plane, the remaining 
elastic constants (C12, C22, C44) can be calculated from 
relations (7) and (8). The results are shown in Table I, 
scaled with the average tensile modulus E. The materials 
which are numbered 1-4 are those with tangential 
stiffness greater than the radial, listed in increasing degree 
of anisotropy. Those materials with radial stiffness 
greater than the tangential are listed as materials 5-8. 
For comparison, the isotropic case is also listed. 

YIELD AND INHOMOGENEOUS PLASTICITY 

The stress-strain curve for spherulitic polymers is 
non-linear at small strains below the load maximum. The 
spherulite is elastically inhomogeneous, and as the 
applied tensile stress increases in a mechanical test, the 
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Table 1 Elastic constants for a variety of anisotropy ratios k = E and # = 3E/8 

Number C22/C11 CI 1/E C12/E C22/E C23/E C'*4/E 

1 2 1.0 0.7 2.0 0.780 0.250 

2 3 1.0 0.50 3.0 0.500 0.073 

3 5 1.0 0.1 5.0 0.422 0.018 

4 10 1.0 - 1.0 10.0 4.000 0.011 

Isotropic 1 3/2 3/4 3/2 3/'4 3,/8 

5 1/2 2.0 0.9 1.0 0.860 1.600 

6 1/3 3.0 0.8 1.0 0.827 0.800 

7 1/5 5.0 0.6 1.0 0.824 0.580 
8 1/10 10.0 0.7 1.0 0.628 0.380 

yield stress is reached locally at different applied stresses 
so plasticity is initiated progressively through the 
spherulite. This has been experimentally observed earlier 
in polyethylene 12 and in polypropylene 13. For poly- 
propylene, the large strain plastic deformation is 
accommodated by microcracking in the polar regions of 
the spherulite and by plastic shear in the equatorial 
regions (where the tensile axis is parallel to the polar 
direction) 14. The regions of the spherulite which 
plastically yield can be predicted in terms of the 
distribution of stress in the spherulite. An approximate 
analysis based on this micromechanical description can 
be made by calculating the distribution of stress 
elastically. Using an appropriate yield condition defined 
in terms of the state of stress, the regions of the spherulite 
which have yielded can be identified. 

Yield in polymers shows a dependence upon the 
hydrostatic component of the applied stress. Significant 
increases in tensile yield stress are observed for applied 
hydrostatic pressures which are of the same order of 
magnitude as the yield stress of the material 15'16. To 
account for this the yield criterion may be written as 
follows (in terms of the stress invariants): 

12 + ~ I  1 = C (9) 

where ~ and c are material properties. The invariant 11 
is the sum of the normal stresses and the second term 
therefore represents the effect of the hydrostatic pressure 
upon yield; Iz is the equivalent stress, which includes the 
shear components and is the only significant term for 
materials which show no pressure dependence. 

Using data from Mears et al. 15, Zok iv has estimated 
the relevant parameters for polypropylene as c~ = 0.061 
and c = 22.6 MPa. These values have been used in the 
present calculations. The slope of the tensile stress-strain 
curve gave stiffness value E = 500 MPa. 

PROGRESSIVE YIELDING AND THE SHAPE 
OF THE STRESS-STRAIN CURVE 

If we consider one of the materials listed in Table I, in 
the early portion of the loading curve, the stress within 
a typical spherulite is given by Hooke's law, equation 
(1), and it will vary with position in the spherulite. For 
the tangentially stiff materials (materials 1-4 in Table !) 
the stresses tend to be largest near the periphery of the 
sphere, while for the radially stiff materiasls (materials 
5-8) the stresses are largest near the centre of the 
spherulite. The magnitude of this stress concentration 
increases with the degree of spherulite anisotropy. 

Increasing Applied Stress l 
A B C 

0 0 0  
l Yielded Region 

Tensile Axis 

Figure 3 Development of the yielded region for the tangentially stiff 
polymer number 2 (C22/C11 = 3/1). The boundary between the yielded 
(shaded) and the unyielded regions changes with increasing applied 
stress (A, B and C). The corresponding points on the stress-strain 
curve are labelled in Fioure 5. The plastic zone starts at the outer 
regions of the equatorial region and moves inwards 

In a tensile test, the elastic stresses increase 
inhomogeneously within the spherulite until the yield 
criterion given by equation (9) is reached locally. Within 
each spherulite contours of (12 + ~I 1) can be plotted and 
plastic yield will occur where these contours attain their 
largest value. The shape of the plastic zone within the 
spherulite is given approximately by the contour equal 
to c. The relaxation in stress field resulting from yielding 
of some parts of the spherulite is not included in the 
model calculation. This is similar to the treatment given 
in elementary approaches to fracture which predict the 
shape of the plastic zone ahead of the crack tip based 
upon the Westergaard solution for the stresses. Thus for 
materials 1-4, yield is initiated at the outer boundary 
and progressively moves inwards towards the spherulite 
centre as the applied stress increases (Figure 3). 
Conversely, for radially stiff materials (materials 5-8), 
yield is initiated near the centre of the spherulite and 
gradually moves towards the outer boundary (Figure 4). 

The partially yielded spherulite consists of two 
'phases': a yielded volume fraction (f), with a stiffness 
of Ey,  and an unyielded volume fraction (1 - f ) ,  with a 
stiffness E. For a Voigt solid, each phase carries equal 
strain and the composite modulus E¢ is given by: 

E¢ = E(1 - f ) + E y Y  

The tensile stress-strain curve for polypropylene shows 
no work hardening after gross yielding, which is similar 
to an elastic-perfectly plastic solid. This suggests that the 
yielded fraction of the spherulite has a zero effective 
stiffness (an increase in applied strain does not result in 
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Increasing Applied Stress 
- - t 1 = =  

Yielded Region 
Tensile Axis 

Figure 4 Development of the yielded region for the radially stiff 
polymer number 8 (C22/Cll = 1/10). The shape of the yielded zone is 
different from the tangentially stiff case in Figure 3. The points A, B 
and C correspond to the similarly labelled points on the stress-strain 
curve (Figure 6). The plastic zone starts at the centre of the spherulite 
and remains highly localized in the polar directions 

an increase in stress) and Ey is zero. Hence the bulk 
stiffness is reduced to ( 1 - f ) E .  As the applied strain 
increases, the volume fraction which has yielded 
increases, and the incremental stiffness of the spherulite 
decreases. The applied stress-strain curve is therefore 
expected in this model to show curvature (a decreasing 
slope with increasing strain). 

By determining the elastic-plastic boundary at different 
strains, the plastic volume fraction can be estimated and 
the effective spherulite stiffness calculated. The stress- 
strain curve for a tensile test can thus be predicted for 
each material listed in Table I. The comparison between 
the predictions for the various anisotropy ratios and 
experimental curves for polypropylene are shown in 
Figures 5 and 6 for spherulites with relatively high 
tangential stiffness and with high radial stiffness, 
respectively. A comparison with Figures 3 and 4 shows 
the distribution of plasticity for three strains in cases 
which closely approximate the experimental curves. 

A salient point to note is the difference in plastic zone 
development for the tangentially stiff and radially stiff 
models. The first case shows initial yielding in the 
equatorial regions, near the outer boundary of the 
spherulite. With increasing applied stress the plastic zone 
grows inwards. The radially stiff model (Figure 4) shows 
quite a different behaviour, with the initial yielded zone 
being at the centre of the spherulite and growing 
outwards towards the polar regions. This is qualitatively 
expected since a radially stiff spherulite transmits the 
matrix stress efficiently to the centre of the spherulite. 
The small values of applied strain at which yielding is 
observed in these models (--~ 1% in each case, at the point 
A), are consistent with the assumption that the material 
is effectively a linear elastic-inhomogeneous plastic solid. 
Earlier observations on stress relaxation experiments in 
these materials are consistent with plastic deformation 
being measurable at strains of < 50/013. Microstructural 
manifestations of this plasticity are not expected to be 
observable in these early stages of deformation since the 
plastic strains are small and are largely reversible on 
unloading. 

MICROSTRUCTURE OF POLYPROPYLENE 
AND THE MICROMECHANICAL MODEL 

The comparison of the tensile stress-strain curves which 
are predicted from this model with the experimental curve 

(Figures 5 and 6) shows that the model is sensitive to the 
anisotropy ratio. The materials which most clearly match 
the observed behaviour are numbered 2 and 8. For 
radially stiff spherulites, the calculated curve approaches 
the measured one as the anisotropy ratio C22/C11 
(tangential/radial) becomes very small (1/10). For 
tangentially stiff spherulites, the model predicts a best fit 
for a ratio of 3/1. 

The lamellar structure in a spherulite has been 
described by Khoury as cross-hatched, with lamellar 
normals oriented approximately parallel to the radial 
direction, and in the tangential plane I a. The stiffness ratio 
C22/Cll , which is expected to be related to the c-axis 
orientation, is therefore not directly predictable from the 
local lamellar texture alone. However, the micro- 
structural changes reported for polypropylcne tested to 
large strains in tension show that crystallographic slip in 
the equatorial sectors is accompanied by microcracking 
in the polar sectors 14. By comparing these observations 
with the predicted plastic zones shown in Figures 3 and 
4 for the two models which best fit the tensile stress-strain 
curves, it is clear that material number 2, with the 
anisotropy ratio of 3/1, is the most appropriate model. 

The calculations support earlier work which suggested 
that inhomogeneous plasticity can account for the shape 
of the tensile stress-strain curve in sphcrulitic poly- 
mers 8'.2'13. The anisotropy ratio, which is controlled by 

2o C I s o t ~  

{,~ 
~ B \ . 

~o A - ~ ' J J  Experimental Results O3 

5 

Strain (x100) 
Figure 5 Comparison between the experimental and calculated results 
for spberulites with relatively high tangential stiffness: numbers 1-4 in 
Table 1. The best fit is found for material 2 for C22/C11 = 3/1 

~ Isotropic ~ ~  

°;/ Experimental Results ,o 

5 

0 ~ '2 '3 

Strain (x100) 
Figure 6 Comparison between the experimental and calculated results 
for spherulites with relatively high radial stiffness: numbers 5-8 in Table 
1. The best fit is found for material 8 for C22/Cl l  ~ 1/10 
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the lamellar microstructure, has been shown to affect the 
bulk mechanical response directly. An important  
implication of this kind of calculation lies in the 
possibility of predicting microstructures susceptible to 
subcritical crack growth in cases such as environmentally 
assisted fracture, creep and fatigue. The approach shown 
here can be used to estimate this anisotropy ratio in bulk 
crystallized polymers. 

C O N C L U S I O N S  

Using an elastic analysis, the stresses within a spherulite 
in a melt-crystallized solid have been calculated for an 
applied tensile stress. The model assumes an isolated 
spherulite embedded in a matrix. The matrix has the 
average isotropic properties of the bulk, while the 
spherulite has 'self-consistent' properties which are 
different in the radial and tangential directions, consistent 
with the known lamellar structures in polypropylene. The 
calculation involved considering the elastic field first 
within the spherulite and second within the matrix. The 
two fields were then joined at the interface, using 
appropriate  criteria. The resultant stress fields within the 
spherulite could then be calculated accurately. 

A suitable yield criterion was then invoked and the 
regions which have gone plastic were calculated as a 
function of applied strain. The volume fraction of 
plastically deformed material increased with applied 
strain, and the resultant tensile stress-strain curve was 
calculated. The curves for a variety of different 
tangential/radial stiffness ratios were compared to an 
experimental curve, and the best fits were found for ratios 
of C22/C11 of 1/10 and 3/1. The elastic anisotropy ratio 
for a spherulite could therefore be estimated for the first 
time. 
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